Расчетная оценка потерь, обусловленных обтеканием входных кромок лопаток

Л.К. Чернявский (ЗАО «НПФ Невинтермаш»)

Abstract

Для совершенствования энергетических турбомашин, в том числе центробежных, требуется возможно более полная информация о распределении потерь по проточной части. В настоящее время недостаточно ограничиваться знанием того, как потери распределяются по ее элементам. Теперь уже важно знать, каковы потери на характерных участках каждого элемента. В частности, несомненный интерес представляет величина потерь при обтекании входных кромок лопаток лопаточных решеток, являющихся, как известно, ключевыми элементами турбомашин.

Под потерями $h_{\text {вх.кр }}$ в данной статье подразумеваются все потери, обусловленные обтеканием рабочей средой входных кромок.

Обычно входные кромки лопаток выполняют закругленными по дуге окружности, плавно сопрягающейся с основным контуром профиля лопатки в точках A и B (рис. 1; 2, а; 2, б). Однако в мелких вентиляторах и насосах входные кромки непрофилированных лопаток постоянной толщины с целью упрощения технологии изготовления часто оставляют незакругленными, т.е. тупыми (рис. 2, в).

В литературе по турбомашинам количественные данные о $h_{\text {вх.кр }}$ практически отсутствуют. В связи с этим, а также из-за больших трудностей экспериментального определения $h_{\text {вх.кр }}$ весьма желательно иметь хотя бы приближенный метод их расчета (как для закругленных, так и для тупых кромок).

Задача определения. $h_{\text {вх.кр }}$ сводится к задаче определения коэффициента потерь $\varsigma_{\text {вх.кр }}$, поскольку
$h_{\mathrm{BX} \mathrm{Kp}}=\zeta_{\mathrm{BX} \times \mathrm{Kp}} \frac{c_{\mathrm{BX}}^{2}}{2}$,
где c_{BX} - осредненная по окружности и высоте лопатки скорость потока в сечении входа в решетку, абсолютная для неподвижных решеток и относительная для вращающихся; под сечением входа понимают сечение, касательное к входным кромкам лопаток

Рис. 1. Схема круговой лопаточной решетки, состоящей из крыловых профилей
(см. рис. 1), так что $c_{\text {вх }}$ - скорость без учета стеснения потока входными кромками.

Простой способ оценки $\zeta_{в х . к р ~}$ и, следовательно, $h_{\mathrm{Bx} . \mathrm{kp}}$ для случаев обтекания лопаток несжимаемой средой при нулевом угле атаки i может быть предложен на основе гидравлического подхода с привлечением экспериментальных данных по коэффициентам

Рис. 2. Обтекание начальной части лопатки при нулевом угле атаки: а - лопатка крылового профиля; б - лопатка постоянной толщины с закругленной входной кромкой; в - лопатка постоянной толщины с тупой входной кромкой

Рис. З. Картина течения в сужениях прямого плоского изолированного канала, адекватных изображенным на рис. 2 вариантам входной кромки:
а - профилированное сужение; б - сужение с закруглением кромок; в - внезапное сужение

потерь $\zeta_{\text {суж }}$ в сужениях прямых изолированных каналов. Само собой разумеется, что имеются в виду плоские сужения, причем такие, форма профилирующих стенок которых идентична половинному (т.е. лежащему по одну сторону от средней линии профиля лопатки) контуру ее входной кромки (рис. 3).

Правомерность этого подхода в задаче оценки $\zeta_{\text {вх.кр }}$ базируется на следующем: при $i=0$ обтекание входной кромки по передней и задней сторонам профиля почти одинаково и не сильно отличается от обтекания каждой из двух профилирующих стенок сужения плоского изолированного канала. Чтобы убедиться в последнем, достаточно сравнить рис. 2 с рис. 3, из которых видно, что все различие сводится к отсутствию при обтекании лопатки незначительных вихрей у ее передней критической точки C. Согласно работе [1] вследствие очень малой интенсивности этих вихрей их вклад в суммарные потери сужения незначителен, и поэтому разницей величин $\zeta_{\text {в.крр }}$ и $\zeta_{\text {суж }}$ можно пренебречь.

К сожалению, даже в наиболее полном справочнике по гидравлическим сопротивлениям [1] сведения по $\zeta_{с у ж ~}^{\text {плоских вужений интересующих нас типов }}$ отсутствуют. Однако имеются данные по сужениям труб круглого сечения, правда, не.для всех трех изображенных на рис. 3 вариантов, а только для б и в. Эти данные, предварительно преобразованные в

Рис.4. Зависимости коэффициентов потерь $\zeta_{\text {сук }}$ для трубы круглого сечения (--) и плоского канала (- от относительного сужения \bar{S} при разном типе сужения:
1 - закругленное; 2 - внезапное
графическую и удобную для целей настоящей статьи форму, приведены на рис. 4 (штриховые линии). Удобной формой является зависимость $\zeta_{\text {суж.труб }}=f(\bar{s})$, где аргумент \bar{s} равен отношению разности диаметров перед и за сужением к диаметру перед сужением, т.е. является аналогом относительной толщины входной кромки лопатки в решетке
$\bar{s}_{\mathrm{BX} . \mathrm{Kp}}=s_{\mathrm{BX} . \mathrm{Kp}} / a_{\mathrm{BX}}$,
где $s_{\text {вхккр }}$ - толщина входной кромки, которая в случае закругления ее принимается равной $2 r_{\mathrm{BX} \text {.кр }} ; a_{\mathrm{BX}}$ - ширина межлопаточного канала на входе без учета стеснения:
$a_{\mathrm{BX}}=\frac{\pi D_{\mathrm{BX}} \sin \alpha_{\mathrm{BX}}}{z_{\mathrm{BX}}}$,
где z_{Bx} - число лопаток во входном сечении решетки. Отметим, что величину $\bar{S}_{\mathrm{Bx} . \mathrm{kp}}$, определяемую по формуле (2), не следует путать с отношением толщины входной кромки к хорде профиля. Это отношение, являясь одной из геометрических характеристик собственно профиля, тем не менее, на 弓вх.кр не влияет и поэтому в данной работе не используется.

Зависимости $\zeta_{\text {суж.труб }}=f(\bar{s})$, приведенные на рис. 4, к входным кромкам лопаток, очевидно, неприменимы. Однако из них легко получить зависимости
$\zeta_{\text {суж.пл }}=f(\bar{s})$, с помощью которых уже можно оценивать $\zeta_{в х . к р}$, при этом для входных кромок лопаток постоянной толщины (см. рис. 2 б, в) самым непосредственным образом

Переход от $\zeta_{\text {суж.труб }}$ К $\zeta_{\text {суж.пл }}$ элементарен:
$\zeta_{\text {суж.пл }}=0,5 \zeta_{\text {сук.труб }}$.
Данное соотношение было получено в результате несложных выкладок и отражает тот факт, что сужение трубы (по всему периметру круглого сечения) является двумерным, в то время как плоское сужение одномерное.

Зависимости $\zeta_{\text {суж. } . п л ~}=f(\bar{s})$, удовлетворяющие соотношению (4), построены на рис. 4 сплошными линиями. Можно видеть, что при закругленных кромках потери в $5 . .10$ раз меньше, чем при внезапном сужении, но характер зависимости в обоих случаях одинаков: ускоряющийся рост сук.пл $^{\text {от }}$ нуля при $\bar{s}=0$ до бесконечности при $\bar{s}=1$ ($\bar{s}=0$ соответствует отсутствию сужения, а $\bar{s}=1$ - полному перекрытию канала).

Изображенные на рис. 4 кривые с достаточной точностью аппроксимируются эмпирическими формулами:
для закругленного сужения
$\zeta_{\text {суж..nл }}=\frac{0,15(\bar{s})^{0,99}}{(1-\bar{s})^{2,7}}$;
для внезапного сужения
$\zeta_{\text {суж.пл }}=\frac{0,37(\bar{s})^{0,71}}{(1-\bar{s})^{3,9}}$.
Поскольку с точки зрения течения и потерь сужение плоского канала с закруглением кромок (см. рис. 3 , б) почти идентично закругленной входной кромке лопатки постоянной толщины (см. рис. 2, б), а внезапное сужение канала (см. рис. 3, в) - тупой входной кромке такой же лопатки (см. рис. 2, в), формулы (5) и (6). пригодны для оценки коэффициентов потерь на закругленных и тупых входных кромках лопаток постоянной толщины.

Чтобы вычислить $\zeta_{\mathrm{ax} . \text { кр }}$, достаточно в формулы (5) и (6) вместо \bar{s} подставить $\bar{s}_{\text {вх.крр }}$. Таким образомядля лопаток постоянной толщины с закругленными кромками
$\zeta_{\mathrm{BX} . \mathrm{Kp}}=\frac{0,15\left(\bar{s}_{\mathrm{BX} . \mathrm{Kp}}\right)^{0,99}}{\left(1-\bar{S}_{\mathrm{BX} . \mathrm{Kp}}\right)^{2,7}}$;
с тупыми кромками
$\zeta_{\mathrm{BX} . \mathrm{Kp}}=\frac{0,37\left(\bar{s}_{\mathrm{BX} . \mathrm{Kp}}\right)^{0,71}}{\left(1-\bar{s}_{\mathrm{BX} . \mathrm{Kp}}\right)^{3,9}}$.
Формулы (7) и (8) показывают, что $\zeta_{\text {вх.кр }}$ лопатки постоянной толщины (простейший случай профиля лопатки) зависит, как и следовало ожидать, от единственного аргумента: от относительной толщины входной кромки $\bar{s}_{\text {вх.кр }}$. В общем случае произвольного профиля лопатки этот коэффициент, очевидно, должен зависеть также от углового размера φ входной кромки (см. рис. 2, a), который только в частном случае лопатки постоянной толщины равен 180° (рис. 2, б).

Нет необходимости пояснять, что чем больше φ, тем больше поверхность входной кромки и - глав-

ное - больше угол $\varphi / 2$, на который поверхностным линиям тока приходится изменять направление в процессе обтекания кромки по передней и задней ее сторонам. Очевидно, что зависимость $\zeta_{\text {в.крр }}$ от φ возрастающая. При этом, если $\varphi=0$ (кромки, как и лопатки, попросту нет), то $\zeta_{\text {вх.кр }}=0$, а если $\varphi=180^{\circ}$, то выражение для $\zeta_{\text {вхкр }}$ должно иметь вид (7) в случае закругленной кромки и вид (8) в случае тупой. Если в первом приближении считать зависимость $\zeta_{в х . к р}$ от φ - линейной, а от $\bar{s}_{\mathrm{BX} \text { кр }}$ для любого профиля - такой же, как для лопатки постоянной толщины, то в общем случае применительно к закругленным кромкам
$\zeta_{\mathrm{BX} . \mathrm{Kp}}=\frac{0,15\left(\bar{s}_{\mathrm{BX} . \mathrm{Kp}}\right)^{0,99}}{\left(1-\bar{s}_{\mathrm{BX} . \mathrm{Kp}}\right)^{2,7}} \frac{\varphi}{180}$;
применительно к тупым кромкам
$\zeta_{\text {BX. кр }}=\frac{0,37\left(\bar{s}_{\mathrm{BX} . \mathrm{Kp}}\right)^{0,71}}{\left(1-\bar{s}_{\mathrm{BX} . \mathrm{Kp}}\right)^{3,9}} \frac{\varphi}{180}$,
где φ в градусах.
Таким образом, расчетная оценка потерь на закругленных входных кромках лопаток сводится к последовательному использованию элементарных формул (3), (2), (9) и (1). При тупых кромках вместо выражения (9) следует использовать формулу (10).

Формулы (9) и (10), справедливые для любых лопаточных профилей, в том числе и непрофилированных лопаток постоянной толщины, ясно показывают, что потери на кромках $h_{\text {вх.кр }}$ определяются только двумя геометрическими параметрами: $\bar{s}_{\mathrm{Bx} . \mathrm{xp}}$ и φ. Возрастающая функция двух аргументов обращается в ноль при $\bar{s}_{\text {в.ккр }}=0$ и при $\varphi=0$, из чего следует, что для минимизации потерь на входных кромках (при $i=0$) лопатки нужно профилировать с как можно меньшими $s_{\text {Bx. кр }}$ И φ.

Здесь, однако, необходимо отметить, что возможность уменьшения этих параметров далеко не одинакова. В самом деле, если выполнению лопаток с малой $s_{\text {вх.кр }}$ в принципе ничто не мешает, и теоретически возможен вариант даже с $s_{\text {в.ккр }}=0$, то построение профиля с $\varphi \rightarrow 0$ невозможно. Отсюда вытекают следующие соображения:

1) из двух геометрических параметров, определяющих $\zeta_{\mathrm{BX} . \text { кр }}$, более важным является $\bar{s}_{\mathrm{BX} \times \text { кр }}$;
2) в лопаточных решетках, предназначенных для работы на постоянном режиме, т.е. с $i \approx 0$, следует применять профили с возможно более тонкими входными кромками.

К последнему положению уже давно пришли турбомашиностроители (исходя из практического опыта). Оно относится также к лопаточным аппаратам с регулируемым входным лопаточным углом α_{Bx}.

При пользовании формулами (9) и (10) каждый раз требуется знать конкретное значение углового размера входной кромки φ, которое зависит от типа профиля. У профилей постоянной толщины $\varphi=180^{\circ}$; у крыловых (рис. 5, а), клиновых (рис. 5, б), а также у профилей постоянной толщины с утонением к входной кромке (рис. 5, в) $\varphi<180^{\circ}$; у каплевидных профилей (рис. 5, д) $\varphi>180^{\circ}$.

В общем случае значение φ берут из чертежа профиля. Однако в некоторых случаях нет необходимости обращаться к чертежу. Так, если контур утоняющейся к входной кромке части профилей, изображенных на рис. 5, а и 5, в, выполнен по дуге окружно-

Рис. 5. Типичные лопаточные профили (распрямленные), применяемые в центробежных турбомашинах (толщины профилей утрированы):
$a-$ крыловой; б - клиновой; в - постоянной толщины с утонением к входной и выходной кромкам; r - постоянной толщины без утонений, но с закруглением кромок; д - каплевидный

сти радиуса R, что часто и бывает на практике, то угол φ может быть вычислен аналитически:
$\varphi=2 \arcsin \frac{R-s_{\max } / 2}{R-s_{\mathrm{BX} . \mathrm{Kp}} / 2}$.
В клиновых профилях, очевидно,
$\varphi=180^{\circ}-\gamma$,
где γ - угол клина (см. рис. 5, б).
Столь же очевидно, что в каплевидных профилях
$\varphi=180^{\circ}+\delta$,
где δ - угол обратного клина (см. рис. 5, д).
Анализ профилей лопаток большого числа реальных лопаточных аппаратов центробежных турбомашин показал, что несмотря на разнообразие типов используемых профилей угловой размер входной кромки ч изменяется в сравнительно небольшом диапазоне ($130 \ldots 200^{\circ}$), т.е. в $-1,5$ раза. В отличие от этого относительная толщина входной кромки $\bar{s}_{\mathrm{Bx} \text { кр }}$ варьируется в гораздо более широких пределах, особенно для закругленныхккомок ($0,01 \ldots 0,1$), т.е. в 10 раз.

С помощью формулы (9) легко показать, что для широко распространенных на практике закругленных кромок названным диапазонам значений $\bar{s}_{\text {вх.кр }}$ и φ соответствуют значения коэффициента потерь на

входных кромках $\varsigma_{\text {вх.кр }}=0,001 \ldots 0,023$. Это совсем немного по сравнению с коэффициентом суммарных потерь в лопаточных решетках, имеющим, как известно, значение порядка 0,1. Следовательно, можно констатировать, что потери на закругленных входных кромках лопаток при работе лопаточных решеток на режиме $i=0$ (только такой режим работы рассматривается в данной статье) малы.

Иначе'обстоит дело в случае тупых входных кромок, хотя их допускают обычно лишь при малой толщине лопаток. В данном случае коэффициент потерь на входных кромках $\varsigma_{\text {вх.крр }}$, подсчитанный по формуле (10), для практическихдиапазонов $\bar{s}_{\text {вх.кр }}=0,01 \ldots 0,05$ и φ $=180^{\circ}$ (тупые кромки встречаются почти исключительно в лопатках постоянной толщины, а у них $\varphi=$ 180°), оказывается равным 0,015 $\ldots 0,054$. Это составляет уже не пренебрежимую, а заметную часть коэффициента суммарных потерь в решетке и объясняет, почему тупые входные кромки почти никогда не применяют в современных крупных (и даже мелких) турбомашинах, если требуется иметь высокий КПД.

Выражение (9) для $\varsigma_{\text {вх.кр }}$ позволяет сравнить различные типы профилей по величине потерь на входных кромках при $i=0$. Сравнивать следует профили - обязательно одной и той же средней толщины [2]. Сравнение, проведенное с соблюдением этого условия, показало, что из типичных профилей, изображенных на рис. 5, наилучшим по уровню потерь на входной кромке является клиновой профиль с минимальной толщиной входной кромки и $\varphi<180^{\circ}$. Значительно больший, но все же вполне приемлемый $\varsigma_{\mathrm{sx} . \text { кр }}$ имеют крыловой профиль и профиль постоянной толщины с утонением к входной кромке. У этих профилей сравнительно небольшая $s_{\mathrm{Bx}, \text { кр }}$ и $\varphi<180^{\circ}$. Намного хуже профиль постоянной толщины без утонения к входной кромке (см. рис. $5, r$): у него большая $s_{\mathrm{Bx} . к р}$ и $\varphi=180^{\circ}$. Хуже всех каплевидный профиль.

Таким образом, потери $h_{\text {вх.кр }}$ малы, если входные кромки лопаток выполнены закругленными и достаточно тонкими. Покажем это на конкретных примерах лопаточных решеток типичной промежуточной ступени стационарного центробежного компрессора (рис. 6).

Ступень содержит три лопаточные решетки: рабочего колеса (РК), лопаточного диффузора (ЛД) и обрат-но-направляющего аппарата (ОНА). Входные кромки лопаток всех решеток закругленные. Лопатки РК имеют постоянную толщину с утонением к входной и выходной кромкам. Лопатки ЛД и ОНА имеют упрощенные крыловые профили. На расчетном режиме работы (когда во

Рис. 6. Проточная часть промежуточной ступени стационарного центробежного компрессора

всех лопаточных решетках $i \approx 0$) ступень обеспечивает внутренний напор $h_{i}=38620$ Дж/кг при политропном КПД $\eta_{\text {пол }}$, равном 0,807 . Исходные данные и результаты проведенного сравнения:

Лопаточная решетка	PK	лд	OHA
Входной диаметр $D_{\text {Bx }}$, м	0,436	0,830	1,110
Входной угол $\alpha_{\text {ax, }}$,	29,06	16,00	30,00
Число лопаток z	14	18	18
Толщина входной кромки	0,004	0,007	0,0076
Угловой размер φ, ${ }^{\text {², }}$	157	166	162
Скорость потока $c_{\text {вх }}$, м/с	137	148	45
Суммарные потери			
в решетке h_{r}, Дж/кг	3730	1860	930
Ширина межлопаточного			
канала $a_{\text {BX }}, \mathrm{M}$	0,0475	0,0399	0,0969
Относительная толщина			
входной кромки $s_{\mathrm{Bx} \text {. } \mathrm{p}}$, м	0,084	0,175	0,078
Коэффициент потерь ς_{BX}	0,0164	0,0450	0,0151
Потери на входных кромках			
$h_{\text {вх..кр }}$, Дж/кг	154	493	15
Относительные потери $h_{\text {вх.кр }} / h_{r}$	0,041	0,265	0,016
Потери КПД $\Delta \eta_{\mathrm{Bx} . \mathrm{kp}}=h_{\text {bx. кр }} / h_{i}$	0,004	0,013	0,0004

Значения h_{r} в РК, ЛД и ОНА были приняты приближенно равными соответственно 0,$5 ; 0,25$ и 0,125 суммарных потерь в ступени.

Как видно, относительная толщина входных кромок лопаток PK и ОНА - умеренная (соответственно 0,084 и 0,078). Благодаря этому потери $h_{\mathrm{Bx} \text { крр }}$ в PK и ОНА невелики, они составляют вполне допустимые

небольшие части суммарных потерь в соответствующих решетках (0,041 и 0,016). Соответственно мало́ снижение КПД ступени (0,004 в РК и 0,0004 в ОНА).

Иная ситуация в ЛД. Относительная толщина входных кромок его лопаток велика (0,175). Из-за этого потери $h_{\text {вх.кр }}$ в ЛД составляют около четверти суммарных потерь в данной лопаточной решетке и являются причиной заметного снижения КПД ступени - на 0,013.

В заключение необходимо подчеркнуть, что предложенный способ быстрой оценки потерь на входных кромках лопаток турбомашин справедлив, строго говоря, только при нулевом угле атаки и несжимаемости рабочей среды (при малых числах Маха). Оба ограничения объясняются тем, что именно таким условиям соответствуют экспериментальные данные гидравлики, использованные при получении формул для $\varsigma_{в х . к р . ~ Е с л и ~ в е л и к о ~ ч и с л о ~ М а х а ~ и, ~ о с о б е н-~}^{\text {в }}$. но, если $i \neq 0$, то коэффициент $\zeta_{\text {вх.кр }}$ и потери $h_{\text {вх.кр }}$ будут больше, чем рассчитанные изложенным в статье способом

Список литературы

1. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1992.
2. Чернявский Л.К., Гордеев Н.Н. Расчетные данные о зависимости эффективности лопаточного диффузора от формы профиля лопаток//Энергомашиностроение. 1989. №1.
